Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 23, 2017
Previous Article Next Article

Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay

Author affiliations

Abstract

Surface-Enhanced Raman Scattering (SERS) is emerging as a promising strategy for the quantification of immunoglobulin G (IgG) due to its inherent high sensitivity and specificity; however, it remains challenging to integrate SERS detection with a microfluidic system in a simple, efficient and low-cost manner. Here, we report on a novel bifunctional plasmonic-magnetic particle-based immunoassay, in which plasmonic nanoparticles act as soluble SERS immunosubstrates, whereas magnetic particles are for promoting micromixing in a microfluidic chip. With this novel SERS immunosubstrate in conjunction with the unique microfluidic system, we could substantially reduce the assay time from 4 hours to 80 minutes as well as enhance the detection specificity by about 70% in comparison to a non-microfluidic immunoassay. Compared to previous microfluidic SERS systems, our strategy offers a simple microfluidic chip design with only one well for mixing, washing and detection.

Graphical abstract: Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay

Back to tab navigation

Supplementary files

Article information


Submitted
01 Mar 2017
Accepted
28 Apr 2017
First published
03 May 2017

Nanoscale, 2017,9, 7822-7829
Article type
Paper

Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu and W. Cheng, Nanoscale, 2017, 9, 7822
DOI: 10.1039/C7NR01511A

Social activity

Search articles by author

Spotlight

Advertisements