Jump to main content
Jump to site search

Issue 16, 2017
Previous Article Next Article

Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires

Author affiliations

Abstract

Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001)GaN∥(0001)sapphire and (10[1 with combining macron]0)GaN∥(11[2 with combining macron]0)sapphire. Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of “type I” stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

Graphical abstract: Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Jan 2017, accepted on 17 Mar 2017 and first published on 23 Mar 2017


Article type: Paper
DOI: 10.1039/C7NR00032D
Nanoscale, 2017,9, 5212-5221

  •   Request permissions

    Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires

    Q. Liu, B. Liu, W. Yang, B. Yang, X. Zhang, C. Labbé, X. Portier, V. An and X. Jiang, Nanoscale, 2017, 9, 5212
    DOI: 10.1039/C7NR00032D

Search articles by author

Spotlight

Advertisements