Issue 14, 2017

Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light

Abstract

It is difficult to meet the requirements of clinical diagnosis through a single imaging technique. Similarly, satisfactory therapy efficacy is also hard to achieve by a single therapeutic modality. It is therefore highly desirable and interesting to simultaneously achieve multimodal imaging and therapies in one single structure. In this study, we developed a core–shell-satellite NaGdF4:Yb,Er,Mn,Co@mSiO2-CuS structure using up-conversion luminescent (UCL) NaGdF4:Yb,Er,Mn,Co as the core, mesoporous silica as the layer, and the photoactive CuS nanoparticles as the satellites. The further linked photosensitizer (ZnPc) and doxorubicin hydrochloride (DOX) allow the system to have photodynamic therapy (PDT) and chemotherapy functions. The doping of Co2+ ions in the core endows the carrier with T2-weighted magnetic resonance imaging (MRI) properties, and the co-doping of Mn2+ ions can efficiently enhance the red emission which further improves the PDT efficiency by reacting with the attached ZnPc upon near-infrared (NIR) light irradiation. The nanoplatform exhibits excellent anti-tumor efficiency due to a synergistic effect arising from combined PDT, photo-thermal therapy (PTT) and chemotherapy, which has been evidenced by in vitro and in vivo results. Due to the multimodal imaging (MRI, CT, and UCL) properties, the drug delivery process and therapeutic efficacy can be monitored in real time and assessed, thus achieving the target of imaging-guided therapy.

Graphical abstract: Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2016
Accepted
07 Mar 2017
First published
10 Mar 2017

Nanoscale, 2017,9, 4759-4769

Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light

Y. Wang, G. Yang, Y. Wang, Y. Zhao, H. Jiang, Y. Han and P. Yang, Nanoscale, 2017, 9, 4759 DOI: 10.1039/C6NR09030C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements