Issue 1, 2017

Highly efficient and stable MoS2 FETs with reversible n-doping using a dehydrated poly(vinyl-alcohol) coating

Abstract

Despite rapid progress in 2D molybdenum disulfide (MoS2) research in recent years, MoS2 field-effect transistors (FETs) still suffer from a high metal-to-MoS2 contact resistance and low intrinsic mobility, which are major hindrances to their future application. We report an efficient technique to dope thin-film MoS2 FETs using a poly(vinyl-alcohol) (PVA) polymeric coating. This results in a reduction of the contact resistance by up to 30% as well as a reduction in the channel resistance to 20 kΩ sq−1. Using a dehydration process, we were able to effectively control the surface interactions between MoS2 and the more electropositive hydroxyl groups (–OH) of PVA, which provided a controllable and yet reversible increase in the charge carrier density to a value of 8.0 × 1012 cm−2. The non-covalent, thus non-destructive, PVA doping of MoS2 increases the carrier concentration without degrading the mobility, which shows a monotonic increase while enhancing the doping effect. The PVA doping technique is then exploited to create heavily doped access regions to the intrinsic MoS2 channel, which yields 200% increase of the ON-state source–drain current. This establishes PVA doping as an effective approach to enhance the transport properties of MoS2 FETs for a variety of applications.

Graphical abstract: Highly efficient and stable MoS2 FETs with reversible n-doping using a dehydrated poly(vinyl-alcohol) coating

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2016
Accepted
20 Nov 2016
First published
21 Nov 2016

Nanoscale, 2017,9, 258-265

Highly efficient and stable MoS2 FETs with reversible n-doping using a dehydrated poly(vinyl-alcohol) coating

C. J. Lockhart de la Rosa, A. Nourbakhsh, M. Heyne, I. Asselberghs, C. Huyghebaert, I. Radu, M. Heyns and S. De Gendt, Nanoscale, 2017, 9, 258 DOI: 10.1039/C6NR06980K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements