Issue 20, 2017

Characterization of degradation products of regorafenib by LC-QTOF-MS and NMR spectroscopy: investigation of rearrangement and odd-electron ion formation during collision-induced dissociations under ESI-MS/MS

Abstract

Regorafenib is an oral multikinase inhibitor, and it was subjected to stress conditions (hydrolysis, oxidative, thermal and photolytic) as per ICH specified conditions. The drug showed considerable degradation under hydrolysis (acidic, basic and neutral) and oxidative stress conditions, whereas it was stable under other stress conditions. A total of five degradation products (DPs) were observed and these were analyzed by using a UHPLC-DAD system. Chromatographic separation was achieved on an Acquity CSH C18 column (100 × 2.1 mm, 1.7 μ) using 0.1% formic acid and acetonitrile : methanol (80 : 20%, v/v) as the mobile phase in gradient mode. All DPs were characterized by LC-MS/MS, and the major degradation product (DP1) was isolated by using an HPLC preparative system from a degradation mixture and analyzed using NMR (1D and 2D NMR) and IR experiments. It was observed that protonated DP1 and DP3 undergo rearrangement reactions during collision-induced dissociations under positive electrospray ionization conditions. Additionally, in silico toxicity of the drug and its degradation products (DP1–DP5) was evaluated using TOPKAT and DEREK toxicity prediction software tools.

Graphical abstract: Characterization of degradation products of regorafenib by LC-QTOF-MS and NMR spectroscopy: investigation of rearrangement and odd-electron ion formation during collision-induced dissociations under ESI-MS/MS

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2017
Accepted
01 Sep 2017
First published
05 Sep 2017

New J. Chem., 2017,41, 12091-12103

Characterization of degradation products of regorafenib by LC-QTOF-MS and NMR spectroscopy: investigation of rearrangement and odd-electron ion formation during collision-induced dissociations under ESI-MS/MS

S. M. Baira, G. Srinivasulu, R. Nimbalkar, P. Garg, R. Srinivas and M. V. N. K. Talluri, New J. Chem., 2017, 41, 12091 DOI: 10.1039/C7NJ01440F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements