Issue 14, 2017

Photovoltaic properties of novel thiophene- and selenophene-based conjugated low bandgap polymers: a comparative study

Abstract

In this study, we investigated the photovoltaic properties of newly synthesized low bandgap conjugated polymers, poly(4-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)-8-(5-(2,6-didodecylbenzo[1,2-d:4,5-d′]bis(thiazole)-4-yl)thiophen-2-yl)-2,6-didodecylbenzo[1,2-d:4,5-d′]bis(thiazole)) (P1) and poly(4-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)-8-(5-(2,6-didodecylbenzo[1,2-d:4,5-d′]bis(thiazole)-4-yl)selenophen-2-yl)-2,6-didodecylbenzo[1,2-d:4,5-d′]bis(thiazole)) (P2). P1 is a thiophene-based conjugated polymer (TCP), and P2 is a selenophene-based conjugated polymer (SCP). These two different conjugated low bandgap polymers were characterized by NMR and gel permeation chromatography. The physical properties of the polymers were studied by thermogravimetric analysis and conductivity. Moreover, we also investigated the optical, electrochemical and morphological properties of both polymers by UV-vis spectroscopy, cyclic voltammetry and atomic-force microscopy (AFM), respectively. Later, we studied the photovoltaic properties of both low bandgap polymers blended with PC61BM in different ratios with different thicknesses. In addition, post thermal annealing at different temperatures for both polymers was investigated, and the results show that P2 (SCP) exhibited stronger molecular orientation properties as compared to P1 (TCP).

Graphical abstract: Photovoltaic properties of novel thiophene- and selenophene-based conjugated low bandgap polymers: a comparative study

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2017
Accepted
30 May 2017
First published
31 May 2017

New J. Chem., 2017,41, 6315-6321

Photovoltaic properties of novel thiophene- and selenophene-based conjugated low bandgap polymers: a comparative study

Y. N. Lee, P. Attri, S. S. Kim, S. J. Lee, J. H. Kim, T. J. Cho and I. T. Kim, New J. Chem., 2017, 41, 6315 DOI: 10.1039/C7NJ00151G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements