Issue 6, 2017

High performance aluminum–cerium alloys for high-temperature applications

Abstract

Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300 °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Finally, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.

Graphical abstract: High performance aluminum–cerium alloys for high-temperature applications

Supplementary files

Article information

Article type
Communication
Submitted
02 Jun 2017
Accepted
25 Jul 2017
First published
01 Aug 2017

Mater. Horiz., 2017,4, 1070-1078

High performance aluminum–cerium alloys for high-temperature applications

Z. C. Sims, O. R. Rios, D. Weiss, P. E. A. Turchi, A. Perron, J. R. I. Lee, T. T. Li, J. A. Hammons, M. Bagge-Hansen, T. M. Willey, K. An, Y. Chen, A. H. King and S. K. McCall, Mater. Horiz., 2017, 4, 1070 DOI: 10.1039/C7MH00391A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements