Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 2017
Previous Article Next Article

Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

Author affiliations

Abstract

Here we demonstrate that microfluidic cell culture devices, known as Organs-on-a-Chips can be fabricated with multifunctional, real-time, sensing capabilities by integrating both multi-electrode arrays (MEAs) and electrodes for transepithelial electrical resistance (TEER) measurements into the chips during their fabrication. To prove proof-of-concept, simultaneous measurements of cellular electrical activity and tissue barrier function were carried out in a dual channel, endothelialized, heart-on-a-chip device containing human cardiomyocytes and a channel-separating porous membrane covered with a primary human endothelial cell monolayer. These studies confirmed that the TEER–MEA chip can be used to simultaneously detect dynamic alterations of vascular permeability and cardiac function in the same chip when challenged with the inflammatory stimulus tumor necrosis factor alpha (TNF-α) or the cardiac targeting drug isoproterenol. Thus, this Organ Chip with integrated sensing capability may prove useful for real-time assessment of biological functions, as well as response to therapeutics.

Graphical abstract: Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

Back to tab navigation

Supplementary files

Article information


Submitted
14 Apr 2017
Accepted
04 Jun 2017
First published
07 Jun 2017

Lab Chip, 2017,17, 2294-2302
Article type
Paper

Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

B. M. Maoz, A. Herland, O. Y. F. Henry, W. D. Leineweber, M. Yadid, J. Doyle, R. Mannix, V. J. Kujala, E. A. FitzGerald, K. K. Parker and D. E. Ingber, Lab Chip, 2017, 17, 2294
DOI: 10.1039/C7LC00412E

Social activity

Search articles by author

Spotlight

Advertisements