Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2017
Previous Article Next Article

Microanalysis of arsenic in solid samples by laser ablation-atomic fluorescence spectrometry

Author affiliations

Abstract

A spot mode-LA-AFS method has been developed for localised microanalysis of arsenic in biological tissues. The cool argon–hydrogen–air diffusion flame in the detector is able to effectively decompose LA-generated aerosol particles and atomise arsenic for fluorescence detection. After optimisation of the critical LA-AFS parameters through ablation of standards based on cellulose-based filters loaded with various arsenic species, the method was validated by comparison with LA-ICP-MS through measurement of arsenic in the leaflets of the arsenic-hyperaccumulating Chinese ladder brake fern Pteris vittata L. Both methods yielded very similar arsenic concentrations associated with parts of the leaflets. The performance characteristics of the LA-AFS method were as follows: sensitivity, 0.01 mV μg−1 g; detection limit (3× standard deviation of the noise), 11 μg g−1, or, in absolute terms, 30 pg of ablated arsenic; analysis time, ca. 1 min per spot; linearity, 0–40 mg g−1.

Graphical abstract: Microanalysis of arsenic in solid samples by laser ablation-atomic fluorescence spectrometry

Back to tab navigation

Article information


Submitted
21 Sep 2016
Accepted
22 Nov 2016
First published
22 Nov 2016

J. Anal. At. Spectrom., 2017,32, 299-304
Article type
Paper

Microanalysis of arsenic in solid samples by laser ablation-atomic fluorescence spectrometry

Z. Šlejkovec, J. T. van Elteren, V. S. Šelih, M. Šala and W. T. Corns, J. Anal. At. Spectrom., 2017, 32, 299
DOI: 10.1039/C6JA00344C

Social activity

Search articles by author

Spotlight

Advertisements