Jump to main content
Jump to site search

Issue 2, 2017
Previous Article Next Article

Highly efficient and selective biocatalytic production of glucosamine from chitin

Author affiliations

Abstract

N-Acetyl glucosamine (GlcNAc) is one of the most abundant biomolecules on Earth and is cheaply available from chitin, a major component of crustaceans. The key step in the conversion of GlcNAc to high-value products is the de-N-acetylation to glucosamine, in itself a valuable dietary supplement that is produced at over 29 000 tons scale per annum by chemical hydrolysis, a process that requires harsh reaction conditions and leads to side products requiring separation. Here, we report for the first time the isolation and characterisation of an enzyme, a deacetylase from Cyclobacterium marinum that is able to catalyse the highly selective quantitative hydrolysis of GlcNAc to glucosamine under mild reaction conditions. This enzyme is small (38 kDa), is easily obtainable by heterologous expression in E. coli, has high turnover rates (kcat = 61 s−1), tolerates high substrate concentrations (over 100 g L−1) and can be repeatedly re-used as an immobilised catalyst. When coupled with chitinase, the high selectivity of the enzyme for GlcNAc over other biomolecules allowed one-pot extraction of glucosamine from crude solid mushroom fractions containing chitin, thus allowing for alternative production of glucosamine from non-animal sources, of benefit to consumers with crustacean allergies and vegan diets. We suggest that the deacetylase fills an important gap in the sustainable exploitation of GlcNAc and chitin.

Graphical abstract: Highly efficient and selective biocatalytic production of glucosamine from chitin

Back to tab navigation

Supplementary files

Article information


Submitted
21 Oct 2016
Accepted
10 Nov 2016
First published
02 Dec 2016

Green Chem., 2017,19, 527-535
Article type
Paper

Highly efficient and selective biocatalytic production of glucosamine from chitin

Y. M. Lv, P. Laborda, K. Huang, Z. P. Cai, M. Wang, A. M. Lu, C. Doherty, L. Liu, S. L. Flitsch and J. Voglmeir, Green Chem., 2017, 19, 527
DOI: 10.1039/C6GC02910H

Social activity

Search articles by author

Spotlight

Advertisements