Volume 198, 2017

Electrochemical CO2 reduction with low overpotential by a poly(4-vinylpyridine) electrode for application to artificial photosynthesis

Abstract

Pyridine molecules have been used as a catalyst to reduce the activation energy of the CO2 reduction reaction. It has been reported that CO2 is reduced by pyridine catalysts at low overpotential around −0.58 V vs. SCE. Poly(4-vinylpyridine), which has pyridine functional groups shows similar catalytic properties to reduce CO2 at low overpotential like pyridinium catalysts. Different thickness of P(4-VP) coated Pt electrodes were analyzed to determine the catalytic properties for CO2 reduction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy methods showed the catalytic CO2 reduction properties of a P(4-VP)/Pt electrode. Thin P(4-VP)/Pt film showed a low current density of −0.16 mA cm−2 under CO2 atmosphere and the current density reached −0.45 mA cm−2 with increase of the P(4-VP) thickness. The increase of current density was explained by an increased surface concentration of adsorbed pyridinium groups of the thick P(4-VP) layer. Nyquist plots also showed decrease of impedance with increase of the P(4-VP) layer indicating fast charge transfer between Pt and the P(4-VP) layer due to the increase of hybrid ionic complex formation on the Pt surface. However, charge transfer is restricted when the P(4-VP) layer becomes more thick because of slowed protonation of pyridine groups adjacent to the Pt surface due to the suppressed permeability of electrolyte solution into the PVP membrane. This electrochemical observation provides a new aspect of P(4-VP) polymer for CO2 reduction.

Associated articles

Article information

Article type
Paper
Submitted
25 Oct 2016
Accepted
26 Oct 2016
First published
26 Oct 2016

Faraday Discuss., 2017,198, 409-418

Electrochemical CO2 reduction with low overpotential by a poly(4-vinylpyridine) electrode for application to artificial photosynthesis

H. Jeong, M. J. Kang, H. Jung and Y. S. Kang, Faraday Discuss., 2017, 198, 409 DOI: 10.1039/C6FD00225K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements