Issue 7, 2017

Research highlights: comparing the biological response of nanoparticle solid solutions

Abstract

Scientific advances in the field of nanotechnology have led to the wide-scale use of engineered nanomaterials, resulting in an increased demand to understand the biological impact of these materials when released to the environment. This demand has led to an evolving field of science focused specifically on interactions at the nano–bio interface, where researchers investigate the biological responses of a wide range of organisms to engineered nanomaterials. The majority of investigations into the nano–bio interface are focused on the biological response of single-phase nanomaterials, yet engineered nanomaterials are often more complex than a single-phase nanomaterial. Many engineered nanomaterials can be described as solid solutions (or alloys) where multiple types of cations (and/or anions) are present in different ratios, and properties such as spin state, valence charge, and lattice constant can be tuned by changing the atomic composition. Research at the nano–bio interface must go beyond investigating the biological response of single-phase nanomaterials and include a systematic approach to predict how the biological interactions of nanomaterial solid solutions can be controlled via systematic changes in chemical composition. In this highlight, we focus on four publications that use a range of experimental methods to delineate the interactions of solid solutions composed of either Au metal or ZnO solid oxide on a variety of organisms. The first highlighted work tunes the composition of Au–Pt nanoparticles for antibacterial activity. The second article investigates the reprotoxicity of Au–Ag nanoparticles. The third highlighted work shows that Fe–ZnO nanoparticles demonstrate a reduced toxicity when compared to ZnO. Finally, the fourth study presents an in silico design strategy for cancer specific Fe–ZnO nanoparticles. Together, these four studies reveal the wide range of chemical compositions that are accessible in nanomaterial solid solutions and demonstrate that careful modifications in compositional phase space can result in selective nano–bio interactions.

Graphical abstract: Research highlights: comparing the biological response of nanoparticle solid solutions

Article information

Article type
Highlight
First published
22 May 2017

Environ. Sci.: Nano, 2017,4, 1428-1432

Research highlights: comparing the biological response of nanoparticle solid solutions

J. W. Bennett, C. Allen, S. Pramanik, M. J. Gallagher, N. V. Hudson-Smith, D. Jones, M. O. P. Krause and S. E. Mason, Environ. Sci.: Nano, 2017, 4, 1428 DOI: 10.1039/C7EN90025B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements