Issue 4, 2017

Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM

Abstract

The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg−1 U. The presence of coffinite, a U(IV)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 μg L−1) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 μg L−1). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1–5 mg kg−1) compared to concentrations in wetland sediments with higher organic matter (14–15%) and U concentrations (2–21 mg kg−1). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.

Graphical abstract: Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2016
Accepted
05 Mar 2017
First published
06 Mar 2017

Environ. Sci.: Processes Impacts, 2017,19, 605-621

Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM

J. M. Blake, C. L. De Vore, S. Avasarala, A. Ali, C. Roldan, F. Bowers, M. N. Spilde, K. Artyushkova, M. F. Kirk, E. Peterson, L. Rodriguez-Freire and J. M. Cerrato, Environ. Sci.: Processes Impacts, 2017, 19, 605 DOI: 10.1039/C6EM00612D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements