Jump to main content
Jump to site search

Issue 9, 2017
Previous Article Next Article

Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides

Author affiliations

Abstract

Phonon-glass electron-crystal (PGEC) behaviour is realised in La0.5Na0.5Ti1−xNbxO3 thermoelectric oxides. The vibrational disorder imposed by the presence of both La3+ and Na+ cations on the A site of the ABO3 perovskite oxide La0.5Na0.5TiO3 produces a phonon-glass with a thermal conductivity, κ, 80% lower than that of SrTiO3 at room temperature. Unlike other state-of-the-art thermoelectric oxides, where there is strong coupling of κ to the electronic power factor, the electronic transport of these materials can be optimised independently of the thermal transport through cation substitution at the octahedral B site. The low κ of the phonon-glass parent is retained across the La0.5Na0.5Ti1−xNbxO3 series without disrupting the electronic conductivity, affording PGEC behaviour in oxides.

Graphical abstract: Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides

Back to tab navigation

Supplementary files

Article information


Submitted
31 May 2017
Accepted
02 Aug 2017
First published
02 Aug 2017

Energy Environ. Sci., 2017,10, 1917-1922
Article type
Communication

Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides

L. M. Daniels, S. N. Savvin, M. J. Pitcher, M. S. Dyer, J. B. Claridge, S. Ling, B. Slater, F. Corà, J. Alaria and M. J. Rosseinsky, Energy Environ. Sci., 2017, 10, 1917
DOI: 10.1039/C7EE01510K

Social activity

Search articles by author

Spotlight

Advertisements