Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 10, 2017

Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering

Author affiliations

Abstract

The optimization of multiple interfaces in hematite (α-Fe2O3) based composites for photoelectrochemical water splitting to facilitate charge transport in the bulk is of paramount importance to obtain enhanced solar-to-fuel efficiency. Herein, we report the fabrication of ITO/Fe2O3/Fe2TiO5/FeNiOOH multi-layer nanowires and a series of systematic experiments designed to elucidate the mechanism underlying the interfacial coupling effect of the quaternary hematite composite. The hierarchical ITO/Fe2O3/Fe2TiO5/FeNiOOH nanowires display photocurrents that are more than an order of magnitude greater than those of pristine Fe2O3 nanowires (from 0.205 mA cm−2 to 2.2 mA cm−2 at 1.23 V vs. RHE and 1 Sun), and higher than those of most of the recently reported state-of-the-art hematite composites. Structural, compositional and electrochemical investigations disclose that the surface states (SS) are finely regulated via the atomic addition of an Fe2TiO5 layer and FeNiOOH nanodots, while the upgrading of back contact conductivity and charge donor densities originate from the epitaxial relationship and enhanced Sn doping contributed from the ITO underlayer. We attribute the superior water oxidation performance to the interfacial coupling effect of the ITO underlayer (Sn doping and back contact conductivity promoter), the atomic level Fe2TiO5 coating (Ti doping, surface state density and energy level modulation) and the FeNiOOH nanodot electrocatalyst (regulating surface state energy level). Our work suggests an effective pathway for rational designing of highly active and cost-effective integrated photoanodes for photoelectrochemical water splitting.

Graphical abstract: Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering

Supplementary files

Article information


Submitted
26 May 2017
Accepted
18 Jul 2017
First published
18 Jul 2017

Energy Environ. Sci., 2017,10, 2124-2136
Article type
Paper

Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering

P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiró, Y. He, W. Kramer, A. P. Rodríguez, E. Saucedo, J. R. Galán-Mascarós, T. Andreu, J. R. Morante and J. Arbiol, Energy Environ. Sci., 2017, 10, 2124 DOI: 10.1039/C7EE01475A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements