Jump to main content
Jump to site search

Issue 7, 2017

Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat

Author affiliations

Abstract

This article describes the fabrication, characterization, and real-life application of a soft, stretchable electronic-skin-based biofuel cell (E-BFC) that exhibits an open circuit voltage of 0.5 V and a power density of nearly 1.2 mW cm−2 at 0.2 V, representing the highest power density recorded by a wearable biofuel cell to date. High power density is achieved via a unique combination of lithographically-patterned stretchable electronic framework together with screen-printed, densely-packed three-dimensional carbon-nanotube-based bioanode and cathode array arranged in a stretchable “island-bridge” configuration. The E-BFC maintains its performance even under repeated strains of 50%, and is stable for two days. When applied directly to the skin of human subjects, the E-BFC generates ∼1 mW during exercise. The E-BFC is able to power conventional electronic devices, such as a light emitting diode and a Bluetooth Low Energy (BLE) radio. This is the first example of powering a BLE radio by a wearable biofuel cell. Successful generation of high power density under practical conditions and powering of conventional energy-intense electronic devices represents a major step forward in the field of soft, stretchable, wearable energy harvesting devices.

Graphical abstract: Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat

Supplementary files

Article information


Submitted
29 Mar 2017
Accepted
15 Jun 2017
First published
15 Jun 2017

Energy Environ. Sci., 2017,10, 1581-1589
Article type
Communication

Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat

A. J. Bandodkar, J. You, N. Kim, Y. Gu, R. Kumar, A. M. V. Mohan, J. Kurniawan, S. Imani, T. Nakagawa, B. Parish, M. Parthasarathy, P. P. Mercier, S. Xu and J. Wang, Energy Environ. Sci., 2017, 10, 1581 DOI: 10.1039/C7EE00865A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements