Jump to main content
Jump to site search

Issue 1, 2017
Previous Article Next Article

Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device

Author affiliations

Abstract

Skutterudite materials are widely considered for thermoelectric waste heat recovery. While the skutterudite structure effectively scatters the high frequency phonons, grain-boundary engineering is needed to further reduce the thermal conductivity beyond simply decreasing grain size. Here, we show that reduced graphene oxide (rGO) increases the grain boundary thermal resistivity by a factor of 3 to 5 compared to grain boundaries without graphene. Wrapping even micron sized grains with graphene leads to such a significant reduction in the thermal conductivity that a high thermoelectric figure of merit zT = 1.5 was realized in n-type YbyCo4Sb12, while a zT of 1.06 was achieved in p-type CeyFe3CoSb12. A 16 leg thermoelectric module was made by using n- and p-type skutterudite–graphene nanocomposites that exhibited conversion efficiency 24% higher than a module made without graphene. Engineering grain boundary complexions with 2-D materials introduces a new strategy for advanced thermoelectric materials.

Graphical abstract: Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device

Back to tab navigation

Supplementary files

Article information


Submitted
24 Aug 2016
Accepted
17 Oct 2016
First published
04 Nov 2016

Energy Environ. Sci., 2017,10, 183-191
Article type
Paper

Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device

P. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G. J. Snyder and L. Chen, Energy Environ. Sci., 2017, 10, 183
DOI: 10.1039/C6EE02467J

Social activity

Search articles by author

Spotlight

Advertisements