Jump to main content
Jump to site search

Issue 40, 2017

A new glance on R2MGe6 (R = rare earth metal, M = another metal) compounds. An experimental and theoretical study of R2PdGe6 germanides

Author affiliations

Abstract

The R2PdGe6 series (R = rare earth metal) was structurally characterized, and the results achieved were extended for a comprehensive study on R2MGe6 (M = another metal) compounds, employing symmetry-based structural rationalization and energy calculations. Directly synthesized R2PdGe6 exists for almost all R-components (R = Y, La–Nd, Sm and Gd–Lu) and even if with La is probably metastable. Several single crystal X-ray analyses (R = Y, Ce, Pr, Nd, Er and Lu) indicated oS72-Ce2(Ga0.1Ge0.9)7 as the correct structure. The alternative In-flux method, once optimized, produced three good quality R2PdGe6 single crystals: La2PdGe6 and Pr2PdGe6 turned out to be mS36-La2AlGe6-type non-merohedrally twinned crystals and Yb2PdGe6 is of oS72-Ce2(Ga0.1Ge0.9)7-type. The vacancy ordering phenomenon was considered as a possible cause of the symmetry reduction relations connecting the most frequently reported 2 : 1 : 6 structural models (oS18, oS72 and mS36) with the oS20-SmNiGe3 aristotype. The detected twin formation is consistent with the symmetry relations, which are discussed even considering the validity of the different structural models. DFT total energy calculations were performed for R2PdGe6 (R = Y and La) in the three abovementioned structural models, and for La2MGe6 (M = Pt, Cu, Ag and Au) in the oS18 and oS72 modifications. The results indicate that the oS18-Ce2CuGe6 structure, prevalently proposed in the literature, is associated with the highest energy and thus it is not likely to be realized in these series. The oS72 and mS36 polytypes are energetically equivalent, and small changes in the synthetic conditions could easily stabilize any of them, in agreement with experimental results obtained by direct and flux syntheses.

Graphical abstract: A new glance on R2MGe6 (R = rare earth metal, M = another metal) compounds. An experimental and theoretical study of R2PdGe6 germanides

Supplementary files

Article information


Submitted
23 Jul 2017
Accepted
18 Sep 2017
First published
18 Sep 2017

This article is Open Access

Dalton Trans., 2017,46, 14021-14033
Article type
Paper

A new glance on R2MGe6 (R = rare earth metal, M = another metal) compounds. An experimental and theoretical study of R2PdGe6 germanides

R. Freccero, P. Solokha, D. M. Proserpio, A. Saccone and S. De Negri, Dalton Trans., 2017, 46, 14021 DOI: 10.1039/C7DT02686B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements