Bio-inspired synthetic approaches: from hierarchical, hybrid supramolecular assemblies to CaCO3-based microspheres†
Abstract
A bio-inspired synthetic approach to unprecedented hybrid supramolecular assemblies [Ca(Me2hda)(H2O)3]·H2O (1) and [Ca(C12hda)(H2O)2]·H2O (2), that are stabilized by iminodiacetate-substituted organic ligands is reported. The results of the single-crystal X-ray analysis of 1 further allowed the use of electron microscopy to verify the supramolecular structure of the fibrous assemblies of 2 that incorporate extended alkyl-substituted ligand derivatives. 2 reveals interesting features that distinguish these soft structures from purely inorganic, brittle materials: meshes of nanobelts transform on solid supports to form homogeneous films covering extended, micro-sized areas. The use of the reported ligand system as a habit modifier for CaCO3 results in hierarchical calcite aggregates. The structure-influencing effects of the ligands and their supramolecular assemblies promote the formation of calcite disks that tessellate into hollow microspheres that contain distinctive openings.

Please wait while we load your content...