Jump to main content
Jump to site search

Issue 12, 2017
Previous Article Next Article

Photoisomerization of ruthenium(ii) aquo complexes: mechanistic insights and application development

Author affiliations

Abstract

Ruthenium(II) complexes with polypyridyl ligands have been extensively studied as promising functional molecules due to their unique photochemical and photophysical properties as well as redox properties. In this context, we report the photoisomerization of distal-[Ru(tpy)(pynp)OH2]2+ (d-1) (tpy = 2,2′;6′,2′′-terpyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) to proximal-[Ru(tpy)(pynp)OH2]2+ (p-1), which has not been previously characterized for polypyridyl ruthenium(II) aquo complexes. Herein, we review recent progress made by our group on the mechanistic insights and application developments related to the photoisomerization of polypyridyl ruthenium(II) aquo complexes. We report a new strategic synthesis of dinuclear ruthenium(II) complexes that can act as an active water oxidation catalyst, as well as the development of unique visible-light-responsive giant vesicles, both of which were achieved based on photoisomerization.

Graphical abstract: Photoisomerization of ruthenium(ii) aquo complexes: mechanistic insights and application development

Back to tab navigation

Article information


Submitted
10 Jan 2017
Accepted
14 Feb 2017
First published
15 Feb 2017

Dalton Trans., 2017,46, 3787-3799
Article type
Perspective

Photoisomerization of ruthenium(II) aquo complexes: mechanistic insights and application development

M. Hirahara and M. Yagi, Dalton Trans., 2017, 46, 3787
DOI: 10.1039/C7DT00079K

Social activity

Search articles by author

Spotlight

Advertisements