Issue 20, 2017

Improving Pseudomonas fluorescens esterase for hydrolysis of lactones

Abstract

Although both acyclic esters and lactones contain ester functional groups, their shapes differ and most esterases are poor catalysts for hydrolysis of lactones. For example, hydrolysis of β-butyrolactone, α-angelicalactone and ε-caprolactone catalyzed by esterase from Pseudomonas fluorescens (PFE) is 10, 48, and 510 times slower than hydrolysis of the ester p-nitrophenol acetate (kcat/Km = 26 000 M−1 s−1). Two possible reasons for the slower hydrolysis of lactones by PFE are the different orientations of 1) the alcohol oxygen lone pairs (mechanistic hypothesis) or 2) the alcohol alkyl group in lactones (shape hypothesis). To test these hypotheses, we engineered higher lactonase activity into esterase PFE using site-directed mutagenesis. First, we added a hydrogen bond donor near the lactone alcohol oxygen (F158Y), but these variants showed no significant increase (p = 0.44) in lactonase catalytic efficiency with ε-caprolactone (17 ± 24 fold increase over 9 variants) as compared to variants without this substitution (10 ± 7 fold increase over 28 variants). Docking placed the hydroxyl group of Tyr158 too far from the lactone to hydrogen bond suggesting that additional substitutions would be needed to create this interaction. Second, we created space for the lactone alcohol alkyl group (I224A). These variants showed a significant increase (p < 0.001) in lactonase catalytic efficiency (32 ± 16 fold over 13 variants) as compared to variants without this substitution (1.2 ± 0.5 fold over 14 variants). Docking placed ε-caprolactone within hydrogen bonding distance of the catalytic histidine in the PFE I224A variant, while it was too far in wild-type PFE. The best combination of substitutions for ε-caprolactone and β-butyrolactone was L29P/F143V/F158Y/I224A, whose kcat/Km was 86 and 13 times higher, respectively, than wt PFE. For α-angelicalactone, the best variant was F143W/I224A, which increased kcat/Km 20-fold over wt PFE. These results suggest that matching the shape of the binding site to the shape of the lactone is the most effective way to increase lactonase activity in esterases.

Graphical abstract: Improving Pseudomonas fluorescens esterase for hydrolysis of lactones

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2017
Accepted
19 Sep 2017
First published
21 Sep 2017

Catal. Sci. Technol., 2017,7, 4756-4765

Improving Pseudomonas fluorescens esterase for hydrolysis of lactones

Q. Ding and R. J. Kazlauskas, Catal. Sci. Technol., 2017, 7, 4756 DOI: 10.1039/C7CY01770G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements