Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We discuss the basic physics of the flow of micron-scale droplets in 2D geometry. Our focus is on the use of droplet ensembles to look into fundamental questions of non-equilibrium systems, such as the emergence of dynamic patterns and irreversibility. We review recent research in these directions, which demonstrate that 2D microfluidics is uniquely set to study complex out-of-equilibrium phenomena thanks to the simplicity of the underlying Stokes flow and the accessibility of lab-on-chip technology.

Graphical abstract: Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier

Page: ^ Top