Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2017
Previous Article Next Article

Recent advances in the textural characterization of hierarchically structured nanoporous materials

Author affiliations

Abstract

This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites. During the last decades major advances in understanding the adsorption and phase behavior of fluids confined in ordered nanoporous materials have been made, which led to major progress in the physisorption characterization methodology (summarized in the 2015 IUPAC report on physisorption characterization). Here we discuss progress and challenges for the physisorption characterization of nanoporous solids exhibiting various levels of porosity from micro- to macropores. While physisorption allows one to assess micro- and mesopores, a widely employed method for textural analysis of macroporous materials is mercury porosimetry and we also review important insights associated with the underlying mechanisms governing mercury intrusion/extrusion experiments. Hence, although the main focus of this review is on physical adsorption, we strongly emphasize the importance of combining advanced physical adsorption with other complementary experimental techniques for obtaining a reliable and comprehensive understanding of the texture of hierarchically structured materials.

Graphical abstract: Recent advances in the textural characterization of hierarchically structured nanoporous materials

Back to tab navigation

Article information


Submitted
19 May 2016
First published
19 Oct 2016

Chem. Soc. Rev., 2017,46, 389-414
Article type
Review Article

Recent advances in the textural characterization of hierarchically structured nanoporous materials

K. A. Cychosz, R. Guillet-Nicolas, J. García-Martínez and M. Thommes, Chem. Soc. Rev., 2017, 46, 389
DOI: 10.1039/C6CS00391E

Social activity

Search articles by author

Spotlight

Advertisements