Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 48, 2017
Previous Article Next Article

The cohesive energy of superheavy element copernicium determined from accurate relativistic coupled-cluster theory

Author affiliations

Abstract

The cohesive energy of bulk copernicium is accurately determined using the incremental method within a relativistic coupled-cluster approach. For the lowest energy structure of hexagonal close-packed (hcp) symmetry, we obtain a cohesive energy of −36.3 kJ mol−1 (inclusion of uncertainties leads to a lower bound of −39.6 kJ mol−1), in excellent agreement with the experimentally estimated sublimation enthalpy of −38+12−10 kJ mol−1 [R. Eichler et al., Angew. Chem. Int. Ed., 2008, 47, 3262]. At the coupled-cluster singles, doubles and perturbative triples level of theory, we find that the hcp structure is energetically quasi-degenerate with both face-centred and body-centred cubic structures. These results provide a basis for testing various density-functionals, of which the PBEsol functional yields a cohesive energy of −34.1 kJ mol−1 in good agreement with our coupled-cluster value.

Graphical abstract: The cohesive energy of superheavy element copernicium determined from accurate relativistic coupled-cluster theory

Back to tab navigation

Article information


Submitted
24 Oct 2017
Accepted
22 Nov 2017
First published
22 Nov 2017

Phys. Chem. Chem. Phys., 2017,19, 32286-32295
Article type
Paper

The cohesive energy of superheavy element copernicium determined from accurate relativistic coupled-cluster theory

K. G. Steenbergen, J.-M. Mewes, L. F. Pašteka, H. W. Gäggeler, G. Kresse, E. Pahl and P. Schwerdtfeger, Phys. Chem. Chem. Phys., 2017, 19, 32286
DOI: 10.1039/C7CP07203A

Social activity

Search articles by author

Spotlight

Advertisements