Issue 46, 2017

Aggregation-induced visible light absorption makes reactant 1,2-diisocyanoarenes act as photosensitizers in double radical isocyanide insertions

Abstract

The joint computational and experimental efforts reveal that the organic molecule 1,2-diisocyano-4,5-dimethylbenzene (1) acts as both a reactant and a photosensitizer (PS) in a metal-free reaction with perfluoroalkylhalide (2) to produce 2-perfluoroalkyl quinoxalines (3) under visible light. Both the π–π stacking aggregation in crystals and the solvation in various solvents of PS 1 exhibited visible-light absorption at 466 nm in spite of its smaller coefficient than that of the ultraviolet-light absorption. Such an aggregation-assisted visible-light absorption phenomenon is rationalized by theoretical calculations of the condensed-phase properties with the consideration of the explicit polarization effect from the neighboring molecules. Upon irradiation with different wavelengths, the emission colors changed from navy to bright yellow. Fluorescence lifetime measurements show that the emission of 1 comes from its singlet excited state. The aggregation induced emission when excited at 420 nm has a shorter lifetime (0.45 ns) than that of the emission from isolated molecules (2.71 ns) when excited at 381 nm. It is conceived that the aggregation assisted visible light absorption properties may be general in other photo-reactive molecules, such as 1,4-diisocyano-2,5-dimethylbenzene (4), 1,4-dicyanobenzene (5), and 1,4-diisocyanobenzene (6), which are widely used in many photochemical reactions in the absence of any external photosensitizer.

Graphical abstract: Aggregation-induced visible light absorption makes reactant 1,2-diisocyanoarenes act as photosensitizers in double radical isocyanide insertions

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2017
Accepted
08 Nov 2017
First published
08 Nov 2017

Phys. Chem. Chem. Phys., 2017,19, 31443-31451

Aggregation-induced visible light absorption makes reactant 1,2-diisocyanoarenes act as photosensitizers in double radical isocyanide insertions

W. Wang, X. Sun, J. Qu, X. Xie, Z. Qi, D. Hong, S. Jing, D. Zheng, Y. Tian, H. Ma, S. Yu and J. Ma, Phys. Chem. Chem. Phys., 2017, 19, 31443 DOI: 10.1039/C7CP05936A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements