Issue 40, 2017

Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length

Abstract

Ionic liquids (ILs) exhibit tunable behaviour and properties that are due to their supramolecular structure. We synthesized a series of alkylated and fluorinated phosphonium dicyanamide ILs to study the relation between molecular structure and assembly with a focus on the roles of cation chain length and fluorination. Small angle X-ray scattering indicated a lamellar structure with long-range order for all fluorinated ILs, while alkylated ILs showed only the general structures of ILs, i.e., alternating a polar ionic-zone and a nonpolar alkyl-zone. “Fluorophobic” interactions caused microphase segregation between perfluorinated and other molecular segments, “fluorophilic” interactions among the perfluorinated segments stabilized the microphase structure, and the coupling of “fluorophobic” and “fluorophilic” interactions resulted in a stable mesophase structure. The perfluorinated segments packed more densely than the alkylated analogues; the fluorinated versions (except for F2) liquefied at temperatures considerably above that of alkylated ILs. The lamellar structures strongly affected the rheology of the ILs. Fluorinated ILs had higher viscosities and exhibited non-Newtonian shear thinning; the alkylated ILs of the same length had an order of magnitude lower viscosities and were purely Newtonian. We propose that the disruption of lamellar structure in the shear flow causes the non-Newtonian flow behaviour.

Graphical abstract: Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2017
Accepted
20 Sep 2017
First published
21 Sep 2017

Phys. Chem. Chem. Phys., 2017,19, 27251-27258

Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length

D. Rauber, P. Zhang, V. Huch, T. Kraus and R. Hempelmann, Phys. Chem. Chem. Phys., 2017, 19, 27251 DOI: 10.1039/C7CP04814A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements