Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 29, 2017
Previous Article Next Article

Vibronic coupling in organic semiconductors for photovoltaics

Author affiliations

Abstract

Light-induced charge transfer from the photoexcited donor to the acceptor is the fundamental step towards current generation in organic solar cells. Experimental evidence for efficient charge separation on ultrafast time scales has been available for quite some time. Yet even today, the elementary mechanisms underlying this process in organic semiconductors and in particular the role of the coherent wave-like motion of electrons and nuclei for the charge separation are still a matter of considerable debate. In this perspective, we present a survey of the current understanding on the role of quantum coherences in organic semiconductors. Specifically, we discuss the role of vibronic couplings for ultrafast charge separation dynamics with particular attention on the potential implications for the light-to-current conversion process in photovoltaic devices.

Graphical abstract: Vibronic coupling in organic semiconductors for photovoltaics

Back to tab navigation

Article information


Submitted
07 May 2017
Accepted
26 Jun 2017
First published
26 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 18813-18830
Article type
Perspective

Vibronic coupling in organic semiconductors for photovoltaics

A. De Sio and C. Lienau, Phys. Chem. Chem. Phys., 2017, 19, 18813
DOI: 10.1039/C7CP03007J

Social activity

Search articles by author

Spotlight

Advertisements