Issue 28, 2017

The structural and electronic properties of reduced amorphous titania

Abstract

Crystalline titania has been extensively studied using experimental and theoretical tools. Amorphous titania, however, has received less attention in the literature, despite its importance for a number of applications, such as photocatalysis, batteries, and electronic devices. In this work we modeled amorphous titania using a combination of molecular dynamics and density functional theory with several stoichiometries (TiOx, 2 ≥ x ≥ 1.75). Our results show that oxygen atom removal from amorphous titania is much easier than from crystalline titania, indicating that reduced amorphous structures are likely common. Ti atoms in amorphous titania exhibit a distribution of coordination numbers (five to seven), but the average coordination number of oxygen increases upon reduction. We also identified that gap states arise in substoichiometric titania due to the formation of Ti3+ centers. Such gap states are highly localized and randomly distributed across different Ti atoms, although we do observe a slight preference for electron localization on seven-coordinated Ti atoms. We observe that band gaps increase with reduction of amorphous titania. We also analyzed a proposed hole hopping mechanism involving oxygen vacancies by calculating hole hopping distances. We found that such distances are large except in very reduced states, indicating likely slow hole diffusion through an oxygen vacancy mechanism. Our work is the first of its kind to thoroughly characterize the structural and electronic properties of amorphous titania in reduced states.

Graphical abstract: The structural and electronic properties of reduced amorphous titania

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2017
Accepted
30 Jun 2017
First published
30 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 18671-18684

The structural and electronic properties of reduced amorphous titania

N. A. Deskins, J. Du and P. Rao, Phys. Chem. Chem. Phys., 2017, 19, 18671 DOI: 10.1039/C7CP02940C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements