Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 23, 2017
Previous Article Next Article

The Rashba effect and indirect electron–hole recombination in hybrid organic–inorganic perovskites

Author affiliations

Abstract

Slow electron–hole recombination, characterized by the bimolecular coefficient k2 in hybrid organic–inorganic perovskites (HOIPs), is a key to their outstanding photovoltaic performance. The measured k2 in HOIPs strongly deviates from k2T−3/2 (T is the temperature) in typical direct-gap semiconductors. Here we show that the observed temperature dependence can be quantitatively accounted for by phonon-assisted recombination of electrons and holes located at the band extrema, which become indirect due to the Rashba effect. Polar optical phonons are most effective in facilitating this indirect recombination. The variation in k2 in HOIPs among different studies in the literature can be attributed to different Rashba strengths in their samples. Our results indicate that the confluence of the Rashba effect and polar coupling transform HOIPs into a unique indirect semiconductor that can accommodate both strong optical absorption and slow carrier dynamics.

Graphical abstract: The Rashba effect and indirect electron–hole recombination in hybrid organic–inorganic perovskites

Back to tab navigation

Supplementary files

Article information


Submitted
19 Apr 2017
Accepted
22 May 2017
First published
22 May 2017

Phys. Chem. Chem. Phys., 2017,19, 14907-14912
Article type
Communication

The Rashba effect and indirect electron–hole recombination in hybrid organic–inorganic perovskites

Z. Yu, Phys. Chem. Chem. Phys., 2017, 19, 14907
DOI: 10.1039/C7CP02568H

Social activity

Search articles by author

Spotlight

Advertisements