In vitro study of the host responses to model biomaterials via a fibroblast/macrophage co-culture system†
Abstract
Surface properties are believed to play important roles in initial inflammatory and subsequent wound healing/fibrotic responses after implantation of biomaterials. To investigate the surface property effect in mediating these host responses, we used an in vitro fibroblast/macrophage co-culture model established with a cell migration chamber, and a series of self-assembling monolayers (SAMs) bearing different terminal groups as model surfaces to study the effect of surface properties on macrophage fusion, fibroblast attachment, spreading morphology, proliferation, outgrowth, as well as pro-(interleukin-6) and anti-(interleukin-10) inflammatory cytokine production, expression of ED-A fibronectin (FN) and alpha-smooth muscle actin (α-SMA). The obtained results show that the hydrophobic CH3 surface caused high levels of inflammatory but low levels of wound healing/fibrotic responses, while the hydrophilic/anionic COOH surface resulted in both low levels of inflammatory and wound healing/fibrotic responses. Interestingly, the hydrophilic OH surface was found to possess a low potential of inducing inflammatory responses but high potential of inducing wound healing/fibrotic responses. These results reveal that the extent of inflammation and wound healing/fibrosis might not be always related in vitro. However, more important is the observation of the macrophage contributions in facilitating the wound healing and fibrotic responses by up-regulation of fibroblast outgrowth, cytokine production as well as ED-A FN and α-SMA expression. Overall, by linking the surface properties to cell activities with our established fibroblast/macrophage co-culture system, we could provide an useful model system for in vitro studies to design more biocompatible biomaterials for various biomedical and tissue engineering applications.
Please wait while we load your content...