Titanium nanoparticles (TiO2)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine†
Abstract
An effective electrochemical sensing platform for the simultaneous determination of benzocaine (BEN) and antipyrine (ANT) based upon titanium dioxide nanoparticle (TiO2)/graphene oxide nanosheet (GO) bulk modified carbon paste electrodes (TiO2–GO/CPE) is reported. The TiO2–GO/CPE electrochemical sensing platform is found to exhibit linear ranges from 1.0 × 10−6 to 1.0 × 10−4 M and 1.2 × 10−8 to 8.0 × 10−5 M for BEN and ANT, respectively. The TiO2–GO/CPE sensor is explored towards the analysis of BEN and ANT in oral fluid (saliva) and pharmaceutical products. The synergy between the graphene oxide nanosheets and titanium dioxide nanoparticles results in a dramatic enhancement in the sensitivity of the sensor through a combination of increased surface area and improved electron transfer kinetics compared to other electrode alternatives. The fabricated TiO2–GO/CPE exhibits high sensitivity and good stability towards the sensing of BEN and ANT and has the potential to be utilised as a clinical assay and QA in pharmaceutical products.
- This article is part of the themed collection: Analyst Recent Open Access Articles