Issue 47, 2017

Wide bandgap small molecular acceptors for low energy loss organic solar cells

Abstract

Non-fullerene organic solar cells (OSCs) have attracted great attention due to their advantages including tunable light absorption and low cost fabrication. Many important strategies have been used to achieve high performing OSCs including increasing the charge transport mobility and reducing the energy loss (Eloss). In this contribution, two wide bandgap small molecular acceptors (IDTzCR and IDTCR) were designed and synthesized for OSCs. Through replacing the thiophene moieties with thiazole ones, charge transport mobility was increased due to introducing S⋯N noncovalent conformational locks, resulting in a significant enhancement of photovoltaic performances. Furthermore, IDTCR based OSCs afforded a record low Eloss value for “narrow bandgap donor:wide bandgap acceptor” systems due to the small LUMO/LUMO energy offset. This contribution showed a novel method to achieve excellent wide bandgap acceptors for OSCs and sheds lights on understanding the relationship between the materials properties and device performances.

Graphical abstract: Wide bandgap small molecular acceptors for low energy loss organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2017
Accepted
13 Nov 2017
First published
14 Nov 2017

J. Mater. Chem. C, 2017,5, 12591-12596

Wide bandgap small molecular acceptors for low energy loss organic solar cells

P. Ye, Y. Chen, J. Wu, X. Wu, S. Yu, W. Xing, Q. Liu, X. Jia, A. Peng and H. Huang, J. Mater. Chem. C, 2017, 5, 12591 DOI: 10.1039/C7TC04669C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements