Issue 19, 2017

Patterned photonic crystals for hiding information

Abstract

Coding techniques are not only a popular strategy for information recording and communication, but also an efficient strategy for information protection. Many species in nature, such as chameleons and peacocks, demonstrate brilliant colourful appearances for camouflage, courtship or communication. The unique optical property that originates from the interaction of light with the periodic nanostructures on their surfaces, known as photonic crystals (PCs), provides an attractive candidate for coding and anti-counterfeiting. Here we present a prototype design for hiding information in photonic crystals by building a coding and encryption relationship between optical stopbands and information units. The hidden messages are protected by three different defense strategies: characteristic optical stopbands, algorithm encryption and angle-dependent encryption, which could dramatically improve the security level of the hidden information. In combination with the large coding capacity, inherent optical stability and robust fabrication process, this PC coding system has great potential for secure information storage and communication, anti-counterfeiting and massively parallelized sensors.

Graphical abstract: Patterned photonic crystals for hiding information

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2017
Accepted
04 Apr 2017
First published
04 Apr 2017

J. Mater. Chem. C, 2017,5, 4621-4628

Patterned photonic crystals for hiding information

Y. Li, X. Zhou, Q. Yang, Y. Li, W. Li, H. Li, S. Chen, M. Li and Y. Song, J. Mater. Chem. C, 2017, 5, 4621 DOI: 10.1039/C7TC01149K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements