Issue 6, 2017

3rd generation poly(ethylene imine)s for gene delivery

Abstract

Cationic polymers play a crucial role within the field of gene delivery offering the possibility to circumvent (biological) barriers in an elegant way. However, polymers are accompanied either by a high cytotoxicity or low efficiency. In this study, a series of high molar mass poly(2-oxazoline)-based copolymers was synthesized introducing 2-ethyl-2-oxazoline, ethylene imine, and primary amine bearing monomer units representing a new generation of poly(ethylene imine) (PEI). The potential of these modified PEIs as non-viral gene delivery agents was assessed and compared to linear PEI by studying the cytotoxicity, the polyplex characteristics, the transfection efficiency, and the cellular uptake using plasmid DNA (pDNA) as well as small interfering RNA (siRNA). High transfection efficiencies, even in serum containing media, were achieved using pDNA without revealing any cytotoxic effects on the cell viability at concentrations up to 1 mg mL−1. The delivery potential for siRNA was further investigated showing the importance of polymer composition for different genetic materials. To elucidate the origins for this superior performance, super-resolution and electron microscopy of transfected cells were used, identifying the endosomal release of the polymers as well as a reduced protein interaction as the main difference to PEI-based transfection processes. In this respect, the investigated copolymers represent remarkable alternatives as non-viral gene delivery agents.

Graphical abstract: 3rd generation poly(ethylene imine)s for gene delivery

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2016
Accepted
20 Dec 2016
First published
21 Dec 2016

J. Mater. Chem. B, 2017,5, 1258-1274

3rd generation poly(ethylene imine)s for gene delivery

T. Bus, C. Englert, M. Reifarth, P. Borchers, M. Hartlieb, A. Vollrath, S. Hoeppener, A. Traeger and U. S. Schubert, J. Mater. Chem. B, 2017, 5, 1258 DOI: 10.1039/C6TB02592G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements