Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

There will be scheduled maintenance work beginning on Saturday 15th June 2019 at 8:30 am through to Sunday 16th June 2019 at 11:30 pm (BST).

During this time our website may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 22, 2017
Previous Article Next Article

Reduced titania@layered double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation

Author affiliations

Abstract

Photoelectrochemical (PEC) water oxidation has received considerable attention owing to its key role in the overall water splitting. In this work, several reduced titania@layered double hydroxide (CoAl–LDH, CoCr–LDH, and CoFe–LDH) hybrid photoanodes were fabricated via electrochemical deposition of LDH on the reduced titania, and their PEC properties for water oxidation were studied systematically. The reduced titania@CoCr–LDH photoanode shows a much improved PEC performance compared with pristine reduced titania, with a photocurrent density enhancement of 43% (from 0.65 mA cm−2 to 0.93 mA cm−2) and an onset potential decrease of 21% (from 0.23 V to 0.18 V vs. the RHE). This improvement is also successfully demonstrated in the reduced titania@CoAl–LDH and reduced titania@CoFe–LDH system. The photoconversion efficiency of reduced titania is significantly enhanced after the incorporation of LDH (0.42–0.51% at ∼0.46 V vs. the RHE). Both the experimental studies and DFT calculations confirm a synergistic effect between the reduced titania and LDH. The results show that a good match of the band structure facilitates the fast electron–hole separation and the migration of holes from reduced titania to LDH, followed by the LDH catalyzed water oxidation. The CoCr–LDH has the highest driving force for oxygen evolution among these LDHs, accounting for the optimal PEC performance of the reduced titania@CoCr–LDH photoanode.

Graphical abstract: Reduced titania@layered double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Jan 2017, accepted on 02 May 2017 and first published on 02 May 2017


Article type: Paper
DOI: 10.1039/C7TA00770A
J. Mater. Chem. A, 2017,5, 11016-11025

  •   Request permissions

    Reduced titania@layered double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation

    J. Guo, C. Mao, R. Zhang, M. Shao, M. Wei and P. Feng, J. Mater. Chem. A, 2017, 5, 11016
    DOI: 10.1039/C7TA00770A

Search articles by author

Spotlight

Advertisements