Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 4, 2017
Previous Article Next Article

A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering

Author affiliations

Abstract

In this review article, the important features (optical, thermal and electrochemical) of triphenylamine (TPA) based organic hole transport materials (HTMs) in accordance with their structural diversities are discussed from their evolution to recent advancements. The literature here covers past and ongoing work mostly relevant to HTMs used in DSSCs and PSCs. Besides the good optical properties and high hole mobility, the stability of the amorphous state of the HTM layer is a crucial factor in the commercialization of PSCs. The stability of the amorphous glassy state of HTMs is defined by an important physical parameter, i.e., the glass transition temperature (Tg) which is discussed on the basis of the molecular structure of HTMs.

Graphical abstract: A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering

Back to tab navigation

Article information


Submitted
29 Sep 2016
Accepted
19 Nov 2016
First published
21 Nov 2016

J. Mater. Chem. A, 2017,5, 1348-1373
Article type
Review Article

A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering

P. Agarwala and D. Kabra, J. Mater. Chem. A, 2017, 5, 1348
DOI: 10.1039/C6TA08449D

Social activity

Search articles by author

Spotlight

Advertisements