Issue 4, 2017

Highly near-IR emissive ytterbium(iii) complexes with unprecedented quantum yields


The design of highly near-infrared (NIR) emissive lanthanide (Ln) complexes is challenging, owing to the lack of molecular systems with a high sensitization efficiency and the difficulty of achieving a large intrinsic quantum yield. Previous studies have reported success in optimizing individual factors and achieving high overall quantum yields, with the best yield being 12% for Yb(III). Herein we report a series of highly NIR emissive Yb complexes, in which the Yb is sandwiched between an octafluorinated porphyrinate antenna ligand and a deuterated Kläui ligand, which allowed optimization of two factors in the same system, and one of the complexes had an unprecedented quantum yield of 63% (estimated uncertainty 15%) in CD2Cl2 with a long lifetime (τobs) of 714 μs. Systematic analysis of the structure–photophysical properties relationship suggested that porphyrinates are effective antenna ligands with a sensitization efficiency up to ca. 100% and that replacement of the high-energy C–H oscillators in porphyrinate and Kläui ligands significantly improves the intrinsic quantum yield up to 75% (τobs/τrad), both of which contribute to enhancing the NIR emission intensity of Yb(III) up to 25-fold. Besides the high luminescence efficiency, these Yb complexes have other attractive features such as excitation in the visible range and large extinction coefficients which make these Yb(III) complexes outstanding optical materials in the NIR region.

Graphical abstract: Highly near-IR emissive ytterbium(iii) complexes with unprecedented quantum yields

Supplementary files

Article information

Article type
Edge Article
14 Nov 2016
05 Jan 2017
First published
13 Jan 2017
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2017,8, 2702-2709

Highly near-IR emissive ytterbium(III) complexes with unprecedented quantum yields

J. Hu, Y. Ning, Y. Meng, J. Zhang, Z. Wu, S. Gao and J. Zhang, Chem. Sci., 2017, 8, 2702 DOI: 10.1039/C6SC05021B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity