Issue 2, 2017, Issue in Progress

Dual-pH-sensitivity and tumour targeting core–shell particles for intracellular drug delivery

Abstract

The principal problem in the area of drug delivery is achieving better selectivity and controllability. A new core–shell nanoparticle composite (denoted MSN@Tf@Polymer) with dual-pH-sensitivity has been prepared as a drug carrier for intracellular drug delivery and release. MSN@Tf@Polymer consists of mesoporous silica nanoparticles (MSN), green-transferrin (Tf) and diblock copolymer (poly-2-diisopropylamino ethylmethacrylate-b-methoxy-poly ethyleneglycol: mPEG45-PDPAn). The core–shell structure is self-assembled layer by layer. Results show that nearly 80% doxorubicin hydrochloride (DOX) loaded in MSN@Tf@Polymer could be released in 5 h at pH 5.0, which is an improvement from the results obtained at pH 6.5 and pH 7.4. MTT assay and fluorescence inversion microscope experiments indicate that MSN@Tf is successfully taken up by liver cancer cells (Huh7) without apparent cytotoxicity, and Tf has strong intensity of fluorescence for subcellular localization. Confocal laser scanning microscopy (CLSM) experiments indicate that MSN@Tf@Polymer is able to enter the lysosome of the tumor cells. Furthermore, cell apoptosis experiments prove that DOX loaded in MSN@Tf@Polymer has the best anti-tumor effect compared with free DOX and DOX in bare MSN. MSN@Tf@Polymer has high biocompatibility, enhanced drug loading, site-specific delivery and in situ stimulus release and will also hopefully be applied as an intracellular drug delivery system.

Graphical abstract: Dual-pH-sensitivity and tumour targeting core–shell particles for intracellular drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2016
Accepted
14 Nov 2016
First published
03 Jan 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 851-860

Dual-pH-sensitivity and tumour targeting core–shell particles for intracellular drug delivery

W. Hao, Y. Shen, D. Liu, Y. Shang, J. Zhang, S. Xu and H. Liu, RSC Adv., 2017, 7, 851 DOI: 10.1039/C6RA25224A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements