Issue 24, 2017

Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction

Abstract

Iron oxide nanoparticles have been extensively used for energy production in fuel cells; however, the different phases of iron oxide have not been adequately investigated for their effect on the oxygen reduction reaction (ORR). The low temperature synthesis of four kinds of iron oxide nanoparticles with different phases was incorporated inside 3D reduced graphene oxide (rGO) aerogels and their electrochemical, catalytic and electron transfer properties were determined for ORR. The results showed that, at low potentials (0.20 V), rGO composites containing magnetite, maghemite and goethite catalyse ORR via four-electron transfer kinetics while hematite facilitated two-electron transfer kinetics. At higher potentials (0.70 V), all four catalysts proceeded via a two-electron pathway.

Graphical abstract: Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2017
Accepted
02 Nov 2017
First published
03 Nov 2017

New J. Chem., 2017,41, 15180-15186

Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction

R. Karunagaran, C. Coghlan, T. T. Tung, S. Kabiri, D. N. H. Tran, C. J. Doonan and D. Losic, New J. Chem., 2017, 41, 15180 DOI: 10.1039/C7NJ02979A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements