Issue 9, 2017

Multi-chamber microfluidic platform for high-precision skin permeation testing


The established in vitro tool used for testing the absorption and penetration of chemicals through skin in pharmacology, toxicology and cosmetic science is the static Franz diffusion cell. While widespread, Franz cells are relatively costly, low-throughput and results may suffer from poor reproducibility. Microfluidics has the potential to overcome these drawbacks. In this paper, we present a novel microfluidic skin permeation platform and validate it rigorously against the Franz cell by comparing the transport of 3 model chemicals of varying lipophilicity: caffeine, salicylic acid and testosterone. Permeation experiments through silicone membranes show that the chip yields higher sensitivity in permeant cumulative amounts and comparable or lower coefficients of variation. Using a skin organotypic culture, we show that the chip decreases the effect of unstirred water layers that can occur in static Franz cells. The validation reported herein sets the stage for efficient skin permeation and toxicity screening and further development of microfluidic skin-on-chip devices.

Graphical abstract: Multi-chamber microfluidic platform for high-precision skin permeation testing

Article information

Article type
23 Dec 2016
03 Apr 2017
First published
03 Apr 2017
This article is Open Access
Creative Commons BY license

Lab Chip, 2017,17, 1625-1634

Multi-chamber microfluidic platform for high-precision skin permeation testing

M. Alberti, Y. Dancik, G. Sriram, B. Wu, Y. L. Teo, Z. Feng, M. Bigliardi-Qi, R. G. Wu, Z. P. Wang and P. L. Bigliardi, Lab Chip, 2017, 17, 1625 DOI: 10.1039/C6LC01574C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity