Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2017
Previous Article Next Article

Pharmaceutical removal in synthetic human urine using biochar

Author affiliations

Abstract

This research addresses the potential for biochar to remove pharmaceuticals from synthetic urine, thereby allowing the treated urine to be used as a contaminant-free nutrient product. Four biochars and one activated carbon from different source materials were tested: activated coconut carbon, coconut shell, bamboo, southern yellow pine, and northern hardwood. Batch tests were conducted for 24 hours using different compositions of synthetic urine and secondary wastewater effluent with biochar doses of 0.8 and 40 g L−1 and an initial pharmaceutical concentration of 0.2 mmol L−1. Seven pharmaceuticals were tested in this study: acetylsalicylic acid, paracetamol, ibuprofen, naproxen, citalopram, carbamazepine, and diclofenac. Activated coconut carbon, bamboo, and southern yellow pine biochars had the highest pharmaceutical removal in urine compositions at 40 g L−1, adsorbing greater than 90% of each pharmaceutical. These biochars also demonstrated the ability to remove pharmaceuticals in the presence of nutrients, where the maximum removal of phosphorus and nitrogen was 36% by activated coconut carbon, 9% by bamboo, and 23% by southern yellow pine in all waste waters. Due to the high concentrations of nutrients naturally present in urine, there remains a high concentration of nitrogen and phosphorus after biochar treatment. The interactions between biochar, nutrients, and pharmaceuticals suggest that biochar has the ability to remove pharmaceuticals while maintaining nutrient concentrations in solution for future use as a nutrient product.

Graphical abstract: Pharmaceutical removal in synthetic human urine using biochar

Back to tab navigation

Supplementary files

Article information


Submitted
24 Aug 2016
Accepted
08 Feb 2017
First published
14 Feb 2017

This article is Open Access

Environ. Sci.: Water Res. Technol., 2017,3, 553-565
Article type
Paper

Pharmaceutical removal in synthetic human urine using biochar

A. Solanki and T. H. Boyer, Environ. Sci.: Water Res. Technol., 2017, 3, 553
DOI: 10.1039/C6EW00224B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements