Issue 34, 2017

Tuning the copper(ii) coordination properties of cyclam by subtle chemical modifications

Abstract

The acid–base and copper(II) coordination properties of three previously described cyclam derivatives are reported. Potentiometry, mass spectrometry, UV-vis absorption spectroscopy, electrochemistry and theoretical calculations were combined to investigate the protonation and binding properties of Bn-cyclam-EtOH (L1), oxo-cyclam-EtOH (L2) and oxo-Bn-cyclam-EtOH (L3). These three cyclams are C-functionalized by a hydroxyethyl pendant arm and display either one N-benzyl group and/or an amide replacing one macrocyclic secondary amine. The N-benzylic substitution has a significant effect of lowering the basicity of the corresponding protonation sites, while the presence of the amide function lowers the first protonation constants of the ligands. Regardless of the system considered, ESI mass spectrometry showed that only monocupric chelates are formed. Compared to the literature data, the stability constants measured by potentiometry (pCu L1 = 14.67; pCu L2 = 16.95; pCu L3 = 15.28) showed that: (i) the C-appended group has a negligible influence on Cu2+ complexation, (ii) N-benzylation decreases the cupric complex stability, and (iii) the “oxo” function significantly increases the stability of the Cu2+ complex. Furthermore, UV-vis absorption versus pH measurements are in excellent agreement with the potentiometric titrations and show an equal involvement of the four nitrogen atoms in L1 and the strong binding properties of L2 and L3 related to the deprotonation of the carboxamide. The electrochemistry parameters determined by cyclic voltammetry showed the predominance of the [CuL1]2+, [CuL2-H]+ and [CuL3-H]+ species but also the irreversibility of the three Cu2+/Cu+ systems. Finally, density functional theory (DFT) and multiconfigurational CASSCF/NEVPT2 calculations confirmed that the protonation of the cupric complexes occurs at the oxygen atom of the amide group of the “oxo” ligands, which is in agreement with the experimental data.

Graphical abstract: Tuning the copper(ii) coordination properties of cyclam by subtle chemical modifications

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2017
Accepted
27 Jul 2017
First published
27 Jul 2017

Dalton Trans., 2017,46, 11479-11490

Tuning the copper(II) coordination properties of cyclam by subtle chemical modifications

N. Camus, N. Le Bris, S. Nuryyeva, M. Chessé, D. Esteban-Gómez, C. Platas-Iglesias, R. Tripier and M. Elhabiri, Dalton Trans., 2017, 46, 11479 DOI: 10.1039/C7DT00750G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements