Issue 5, 2017

The binuclear dual emitter [Br(CO)3Re(P⋯N)(N⋯P)Re(CO)3Br] (P⋯N): 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine, a new bridging P,N-bidentate ligand resulting from the ring opening of tetrahydrofuran

Abstract

Lithium diphenylphosphide unexpectedly provokes the ring-opening of tetrahydrofuran (THF) and by reaction with 3,6-dichloropyridazine leads to the formation of the ligand 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine (P⋯N), which was isolated. The reaction of this ligand with the (Re(CO)3(THF)Br)2 dimer yields the novel complex [Br(CO)3Re(μ-3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine)2Re(CO)3Br] (BrRe(P⋯N)(N⋯P)ReBr), which was crystallized in the form of a chloroform solvate, (C46H40Br2Cl2N4O8P2Re2)·(CHCl3). The monoclinic crystal (P21/n) displays a bimetallic cage structure with a symmetry inversion centre in the middle of the rhenium to rhenium line. The molecule shows two oxidation signals occurring at +1.50 V and +1.76 V which were assigned to the ReI/ReII and ReII/ReIII metal-centered couples, respectively, while signals observed at −1.38 V and −1.68 V were assigned to ligand centered reductions. Experimental and DFT/TDDFT results indicate that the UV-Vis absorption maximum of BrRe(P⋯N)(N⋯P)ReBr occurring near 380 nm displays a metal to ligand charge transfer (MLCT) character, which is consistent with CV results. Upon excitation at this wavelength, a weak emission (Φem < 1 × 10−3) is observed around 580 nm (in dichloromethane) which decays with two distinct lifetimes τ1 and τ2 of 24 and 4.7 ns, respectively. The prevalence of non-radiative deactivation pathways is consistent with efficient internal conversion induced by the high conformational flexibility of the P⋯N ligand's long carbon chain. Measurements in a frozen solvent at 77 K, where vibrational deactivation is hindered, show intense emission associated with the 3MLCT state. These results demonstrate that BrRe(P⋯N)(N⋯P)ReBr preserves the dual emitting nature previously reported for the mononuclear complex RePNBr, with emission associated with Image ID:c6dt04158b-t1.gif and Image ID:c6dt04158b-t2.gif states.

Graphical abstract: The binuclear dual emitter [Br(CO)3Re(P⋯N)(N⋯P)Re(CO)3Br] (P⋯N): 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine, a new bridging P,N-bidentate ligand resulting from the ring opening of tetrahydrofuran

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2016
Accepted
16 Dec 2016
First published
16 Dec 2016

Dalton Trans., 2017,46, 1567-1576

The binuclear dual emitter [Br(CO)3Re(P⋯N)(N⋯P)Re(CO)3Br] (P⋯N): 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine, a new bridging P,N-bidentate ligand resulting from the ring opening of tetrahydrofuran

M. Saldías, J. Manzur, R. E. Palacios, M. L. Gómez, J. D. L. Fuente, G. Günther, N. Pizarro and A. Vega, Dalton Trans., 2017, 46, 1567 DOI: 10.1039/C6DT04158B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements