Issue 8, 2017

Surface composition and structural changes on titanium oxide-supported AuPd nanoparticles during CO oxidation

Abstract

To investigate the influence of morphological changes on the performance of bimetallic catalyst nanoparticles, two AuPd/TiO2 catalysts with the same starting composition were synthesized via thermal treatments in reducing (H2) or oxidizing (O2) atmospheres, resulting in different morphologies. The surface composition of the bimetallic particles evolved under a CO oxidation reaction environment, thereby changing the performance of both catalysts in repeated heat ramps. In the oxidized material, composed mainly of large AuPd particles and PdO particles, the CO oxidation reaction led to a broadening in the size distribution caused by the appearance of smaller particles, together with an increase in the surface Pd concentration. In the reduced material, the CO oxidation reaction led to particle aggregation, Pd oxidation, and surface Pd enrichment in Pd-rich particles. During the CO oxidation experiments, the oxidized material was activated (decrease of Tlight-off), while the reduced catalyst suffered a deactivation process (increase of Tlight-off). Our results showed that the catalysts converge to a common surface composition and performance, and this convergence seemed to be independent of the initial particle morphology.

Graphical abstract: Surface composition and structural changes on titanium oxide-supported AuPd nanoparticles during CO oxidation

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2017
Accepted
19 Mar 2017
First published
31 Mar 2017

Catal. Sci. Technol., 2017,7, 1679-1689

Surface composition and structural changes on titanium oxide-supported AuPd nanoparticles during CO oxidation

A. A. Teixeira-Neto, R. V. Gonçalves, C. B. Rodella, L. M. Rossi and E. Teixeira-Neto, Catal. Sci. Technol., 2017, 7, 1679 DOI: 10.1039/C7CY00137A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements