Jump to main content
Jump to site search

Issue 46, 2017
Previous Article Next Article

The role of phase separation and related topography in the exceptional ice-nucleating ability of alkali feldspars

Author affiliations

Abstract

Our understanding of crystal nucleation is a limiting factor in many fields, not least in the atmospheric sciences. It was recently found that feldspar, a component of airborne desert dust, plays a dominant role in triggering ice formation in clouds, but the origin of this effect was unclear. By investigating the structure/property relationships of a wide range of feldspars, we demonstrate that alkali feldspars with certain microtextures, related to phase separation into Na and K-rich regions, show exceptional ice-nucleating abilities in supercooled water. We found no correlation between ice-nucleating efficiency and the crystal structures or the chemical compositions of these active feldspars, which suggests that specific topographical features associated with these microtextures are key in the activity of these feldspars. That topography likely acts to promote ice nucleation, improves our understanding of ice formation in clouds, and may also enable the design and manufacture of bespoke nucleating materials for uses such as cloud seeding and cryopreservation.

Graphical abstract: The role of phase separation and related topography in the exceptional ice-nucleating ability of alkali feldspars

Back to tab navigation

Supplementary files

Article information


Submitted
20 Jul 2017
Accepted
03 Oct 2017
First published
15 Nov 2017

This article is Open Access

Phys. Chem. Chem. Phys., 2017,19, 31186-31193
Article type
Paper

The role of phase separation and related topography in the exceptional ice-nucleating ability of alkali feldspars

T. F. Whale, M. A. Holden, A. N. Kulak, Y. Kim, F. C. Meldrum, H. K. Christenson and B. J. Murray, Phys. Chem. Chem. Phys., 2017, 19, 31186
DOI: 10.1039/C7CP04898J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements