Issue 18, 2017

Going beyond the three-state ensemble model: the electronic chemical potential and Fukui function for the general case

Abstract

Making use of the grand canonical ensemble the derivation of the analytical equations for the chemical potential and the Fukui function in the general case of any number of ground and excited states is presented. The expressions thus obtained allow one to establish that the ensemble of three consecutive ground states that has been usually used to analyze the effects of temperature in these quantities provides a satisfactory description for them at temperatures of chemical interest. Nevertheless, some situations must be considered cautiously, as for example, when the N + k and N + k + 1 (N is the electron number) ground states are (nearly) quasidegenerate or when the first excited state of both the anion and the cation (with respect to the reference state) is very low in energy. Results for the copper atom (with the ground state of Cu+ as the reference state), using some selected ensemble models constituted by several ground and excited states, are presented to show that the very low-lying excited states of some of the copper species are able to contribute to chemical reactivity at relatively low temperatures (∼2000 K). A relevant aspect is that due to its generality, the present approach provides a new way to study the reactivity of the chemical species under extreme conditions.

Graphical abstract: Going beyond the three-state ensemble model: the electronic chemical potential and Fukui function for the general case

Article information

Article type
Paper
Submitted
11 Jan 2017
Accepted
29 Mar 2017
First published
29 Mar 2017

Phys. Chem. Chem. Phys., 2017,19, 11588-11602

Going beyond the three-state ensemble model: the electronic chemical potential and Fukui function for the general case

M. Franco-Pérez, F. Heidar-Zadeh, P. W. Ayers, J. L. Gázquez and A. Vela, Phys. Chem. Chem. Phys., 2017, 19, 11588 DOI: 10.1039/C7CP00224F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements