Issue 40, 2016

Global minimum of two-dimensional FeB6 and an oxidization induced negative Poisson's ratio: a new stable allotrope

Abstract

Using a global optimization evolutionary algorithm and density functional theory calculations we report, for the first time, two-dimensional tri-FeB6 as a global minimum ground state structure, opening the door for tailoring unique properties by manipulating transition metals. This novel tri-FeB6 consists of borophene-like layers and an Fe-layer with the Fe-layer being sandwiched between boron planes. Its dynamic stability, energetic stability, thermal stability, and mechanical stability have been carefully evaluated, suggesting it as a quite stable material to call for experimental realization. Furthermore, oxidization would retain the planar structural characteristics, resulting in an oxide sheet. Both tri-FeB6 and its oxide are found to have remarkable mechanical properties. In comparison with experimentally fabricated borophene, the in-plane stiffness in tri-FeB6 is greatly enhanced, showing the same stiffness as graphene. Oxidization brings about unusual negative Poisson's ratio properties, rendering the oxide sheet attractive in view of both scientific and technological investigations. In addition, both tri-FeB6 and its oxide are semiconductors with band gaps of about 2 eV. Furthermore, tensile strain can continuously tune the band gaps over a wide range, making tri-FeB6 and its oxide attractive for advanced nanoelectronics.

Graphical abstract: Global minimum of two-dimensional FeB6 and an oxidization induced negative Poisson's ratio: a new stable allotrope

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2016
Accepted
25 Sep 2016
First published
26 Sep 2016

J. Mater. Chem. C, 2016,4, 9613-9621

Global minimum of two-dimensional FeB6 and an oxidization induced negative Poisson's ratio: a new stable allotrope

J. Li, Y. Wei, X. Fan, H. Wang, Y. Song, G. Chen, Y. Liang, V. Wang and Y. Kawazoe, J. Mater. Chem. C, 2016, 4, 9613 DOI: 10.1039/C6TC03710K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements