Issue 28, 2016

The role of H-bonds in the solid state organization of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) structures: bis(hydroxy-hexyl)-BTBT, as a functional derivative offering efficient air stable organic field effect transistors (OFETs)

Abstract

The study of a [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative decorated with hexyl chains functionalized with hydroxyl end groups is reported. A rapid and inexpensive functionalization of the BTBT in positions 2 and 7 has been developed. This compound is able to self-organize into a lamellar structure through σ–π stacking and van der Waals interactions but also through hydrogen bonding interactions. The hydrogen-bonded network controls the interlamellar region in terms of organization and stability. The liquid-crystal phase and structural changes observed by DSC have been characterized using an original approach combining FTIR and powder XRD measurements as a function of temperature. Thermally evaporated diol based OFETs exhibited good mobilities of up to 0.17 cm2 V−1 s−1 measured under an inert atmosphere but also in ambient air. The diol derivative is considered to be a very promising platform for the design of new functionalized BTBT.

Graphical abstract: The role of H-bonds in the solid state organization of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) structures: bis(hydroxy-hexyl)-BTBT, as a functional derivative offering efficient air stable organic field effect transistors (OFETs)

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2016
Accepted
22 Jun 2016
First published
23 Jun 2016

J. Mater. Chem. C, 2016,4, 6742-6749

The role of H-bonds in the solid state organization of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) structures: bis(hydroxy-hexyl)-BTBT, as a functional derivative offering efficient air stable organic field effect transistors (OFETs)

G. H. Roche, Y. Tsai, S. Clevers, D. Thuau, F. Castet, Y. H. Geerts, J. J. E. Moreau, G. Wantz and O. J. Dautel, J. Mater. Chem. C, 2016, 4, 6742 DOI: 10.1039/C6TC01814A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements