Issue 8, 2016

Large thermoelectric power factors and impact of texturing on the thermal conductivity in polycrystalline SnSe

Abstract

Single crystals of SnSe have been reported to have very high thermoelectric efficiencies with a maximum figure merit zT = 2.5. This outstanding performance is due to ultralow thermal conductivities. We report on the synthesis of highly textured polycrystalline SnSe ingots with large single-crystal magnitude power factors, S2/ρ = 0.2–0.4 mW m−1 K−2 between 300–600 K, increasing to 0.9 mW m−1 K−2 at 800 K, and bulk thermal conductivity values κ300K = 1.5 W m−1 K−1. However, small SnSe ingots, which were measured in their entirety, were found to have a substantially reduced κ300K = 0.6 W m−1 K−1. Microscopy and diffraction revealed two distinct types of texturing within the hot-pressed ingots. In the interior, large coherent domains of SnSe platelets with a ∼45° orientation with respect to the pressing direction are found, while the platelets are preferentially oriented at 90° to the pressing direction at the top and bottom of the ingots. Fitting the κ(T) data suggests an increase in defect scattering for the smaller ingots, which is in keeping with the presence of regions of structural disorder due to the change in texturing. Combining the measured S2/ρ with the bulk ingot κ values yields zT = 1.1 at 873 K.

Graphical abstract: Large thermoelectric power factors and impact of texturing on the thermal conductivity in polycrystalline SnSe

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2016
Accepted
29 Jan 2016
First published
29 Jan 2016

J. Mater. Chem. C, 2016,4, 1685-1691

Large thermoelectric power factors and impact of texturing on the thermal conductivity in polycrystalline SnSe

S. R. Popuri, M. Pollet, R. Decourt, F. D. Morrison, N. S. Bennett and J. W. G. Bos, J. Mater. Chem. C, 2016, 4, 1685 DOI: 10.1039/C6TC00204H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements