Electron-transporting third component modifying cathode for simplified inverted ternary blend solar cells†
Abstract
Bathophenanthroline (Bphen), an electron transporting material widely used in organic light-emitting diodes, was added as a third component into a mixed solution of poly(thieno[3,4-b]-thiophene/benzodithiophene) (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) to fabricate simplified inverted polymer solar cells (PSCs). Bphen spontaneously migrated onto the ITO cathode during spin coating, and thereby formed a thin modifying interlayer between the cathode and the active layer. PSCs based on the ternary blend PTB7:PC71BM:Bphen showed a power conversion efficiency of 5.35%, higher than that of the binary blend PTB7:PC71BM in an inverted structure of ITO/photoactive layer/MoO3/Ag without an additional cathode-modifying interlayer (3.43%). The other electron transporting materials, 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBI) and bathocuproine (BCP), were also confirmed to function as Bphen. This strategy simplifies the structure of inverted PSCs without significant loss in efficiency.
Please wait while we load your content...